

### REDUCTION OF RADIOLOGICAL ACCIDENT CONSEQUENCES

# The EU H2020 R2CA project: Main Outcomes

# Reduction of Radiological Consequences of Accidents

### N. GIRAULT (IRSN)

R2CA Summer School, 4-6 July, 2023







# **Contents**

- Objectives & Scope
- Main Results
  - In LOCA modelling
  - In SGTR modelling
  - In Accident prevention and management
- Impact: Updated reactor calculations
- Summary





### **Objectives & Scope**

To consolidate/refine assessments of radiological consequences of explicit DBA and DEC-A accidental scenarios in Gen II, Gen II and Gen III+ NPPs



### To improve code predictability for RC of LOCA & SGTR scenarios within DBA/DEC-A domain

- Identify weaknesses/needs and improve models, tools & calculation chains (incl. coupling)
- Elaborate updated methodologies for evaluation/reduction of RC in DBA/DEC-A
- Apply updated methodologies to derive more realistic safety margins for LOCA/SGTR.
- Derive rationales for the optimization of EP&R actions
- Provide rationales/develop innovative measures/devices/tools for anticipated diagnosis and for the management/mitigation of these accidents
- Provide recommendations for harmonization of the RC evaluation methodologies





# **Objectives & Scope**

To consolidate/refine assessments of radiological consequences of explicit DBA and DEC-A accidental scenarios in Gen II, Gen II and Gen III+ NPPs



#### To improve code predictability for RC of LOCA & SGTR scenarios within DBA/DEC-A domain

- Identify weaknesses/needs and improve models, tools & calculation chains (incl. coupling)
- Elaborate updated methodologies for evaluation/reduction of RC in DBA/DEC-A
- Apply updated methodologies to derive more realistic safety margins for LOCA/SGTR.
- Derive rationales for the optimization of EP&R actions
- Provide rationales/develop innovative measures/devices/tools for anticipated diagnosis and for the management/mitigation of these accidents
- Provide recommendations for harmonization of the RC evaluation methodologies





### Context

### For LOCA 3 types of modelling approaches

- Complex modelling with (coupled) computer codes: simulations of T/H, thermo-mechanics analysis (incl. FP releases from fuel), FP transport and behavior in containment
- Detailed T/H & thermo-mechanics but for FP release/behavior conservative assumptions
- Detailed T/H but for thermo-mechanics conservative assumptions (i.e. entire & instantaneous release of gap content at transient start or 100% rod failure...)

### For SGTR various levels of modeling

- Common features: no simulation of clad defect formation & FP retention in SG upper structures, detailed T/H in I<sup>ary</sup> and to a less extent in II<sup>ary</sup> circuits
- For FP release from defective fuel rods either simple models (RING) or assumptions for lary circuit activity S.-S. & transient evolution (iodine spike) often based on NPP feedbacks
- For FP (esp. iodine) either detailed behavior modelling (incl. gas/liquid partition, flashing, atomization) or simplified modelling (only partitioning considered)



Needs for increasing model prediction/accuracy for DBA/DEC-A conditions & decreasing conservatisms (specific database was build for model V&V) (presentation 3.2)



# Main Results: LOCA modelling



Improve tools for more realistic evaluations of LOCA DBA & DEC-A radiological consequences



# T3.1 FP releases from lary circuit AMBITION

Better evaluation of environ<sup>†</sup> source term



#### **DONE**

- Upgraded models for FP release & transport in lary circuit (releases for High BU fuel...)
- Refitted models for iodinepaint interactions



# T3.2 Clad burst & core modelling

More accurate evaluation of the number of fuel rod burst failures



#### **DONE**

- FP Elaboration of new clad burst lary criteria for Zr alloys (Zr4, E110) & updated clad creep models
  - M5 phase transformation & high T creep models
  - Dev<sup>†</sup> of more detailed core modelling approaches (DRACCAR, ATHLET-CD)



# T3.3 Fuel rod T/M & FP releases AMBITION

More realistic evaluation of FP transient releases

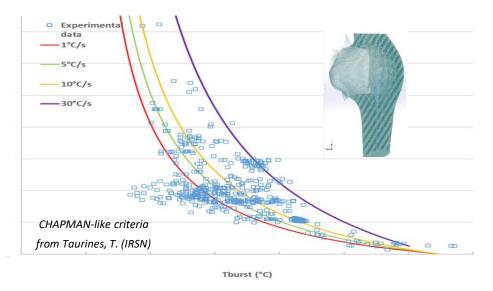


#### **DONE**

- Impv<sup>†</sup> of FP "mechanistic" release models (burst transient releases)
- Updated FP release-fuel T/M tools (inc. their coupling impv<sup>†</sup> & high BU fuel formation)
- Devp<sup>†</sup> of an Axial gas transport model in fuel gap



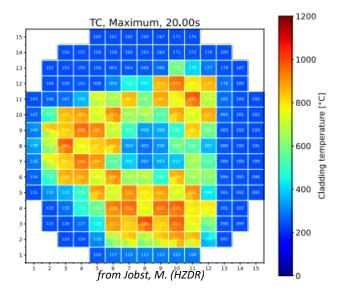



# Main Results: LOCA modelling

#### **AMBITION**

More accurate evaluation of fuel rod burst failures

Existing clad burst criteria & core modelling not relevant to predict number of failed rods in LOCA DBA


### Clad burst



 Devpt of new burst criteria (engineering or true stress based) for Zr4

 Less conservative but based on scattered burst exp. data (remaining uncertainties)

### Core modelling



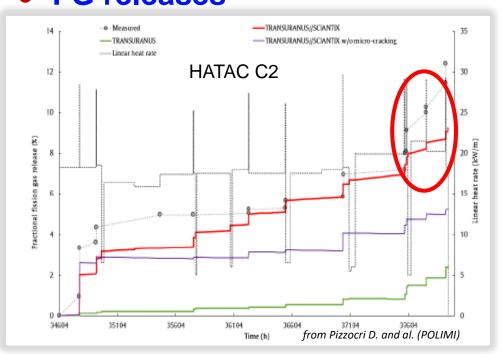
- Devpt of a 3D detailed core approach with 3D
   T/H model & eq. Rod(s)/FA : i.e. in ATHLET-CD
- Promising for core T/H non symetric simulations & non homogenous distribution of FA characteristics but CPU times challenging



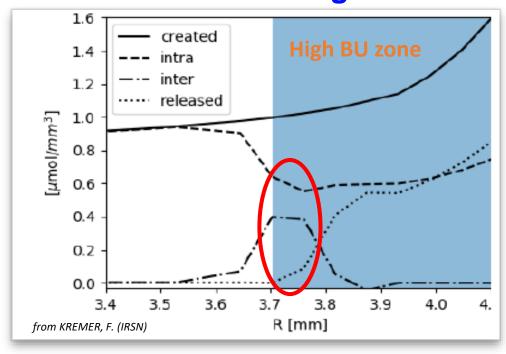
(presentation 3.6)

(presentation 3.5)




# Main results: LOCA modelling

#### **AMBITION**


Refined evaluations of FP release amount & kinetics from fuel

Existing FG release modelling don't simulate properly transient FP releases & higher release from HBS

FG releases



### FG releases from High BU fuel



- Impt of FG release tools and their coupling with fuel performance code
- Dynamics of releases & evolution during irradiation well reproduced in constant/transient conditions (presentation 2.6 & 3.7)
- Improved modelling for FG releases from HBS (≠ EOS added →transient intergranular pore overpressurisation)





# Main Results: SGTR modelling



Improve tools for more realistic evaluations of SGTR DBA & DEC-A radiological consequences



#### T4.1 FP releases from lary circuit **AMBITION**

Better evaluation of environ<sup>†</sup> source term



#### DONE

- New functionalities in tools (lod. flashing) from existing models
- refinements Model (lod. partitioning..)



#### T4.2 FP releases from leaking rod **AMBITION**

More accurate evaluation of lary circuit activity in NO & transients



#### **DONE**

- Imp<sup>ts</sup> of mechanistic models for FP New experim<sup>ts</sup> for H<sub>2</sub> uptake transient burst releases
- gap-to-coolant escape leaking rods (wo axial gap transport....)
- Reffiting of empirical correlations for iodine spike predictions



#### T4.3 Clad Ilary hydriding & failure **AMBITION**

Evaluation of the risks of defective fuel rod failure



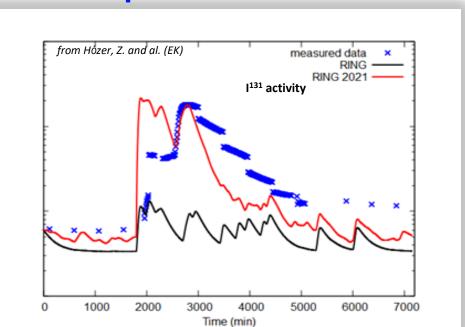
#### **DONE**

- by Zr at low T (~300°C)
- Dev<sup>†</sup> of a prelim. Simplified model Dev<sup>†</sup> of an integral model for clad Ilary hydriding (inc.H<sub>2</sub> uptake/diffusion blister formation



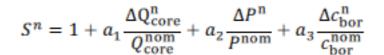






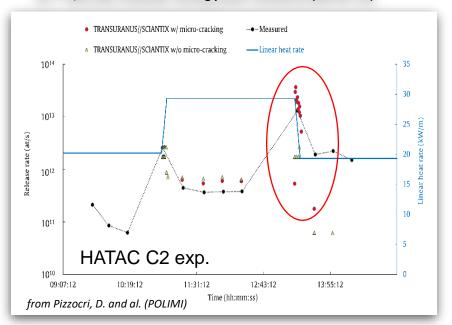

## Main results: SGTR modelling

Best estimate evaluation of I<sup>ary</sup> circuit activity in NO & transient


Existing correlations for iodine spike are empirical & underestimate iodine activity releases in primary circuit

lodine spike




 Updated correlations for lodine spike due to reactor power, primary pressure and H<sub>3</sub>BO<sub>3</sub> conc. changes from new NPP data (presentation 3.9)



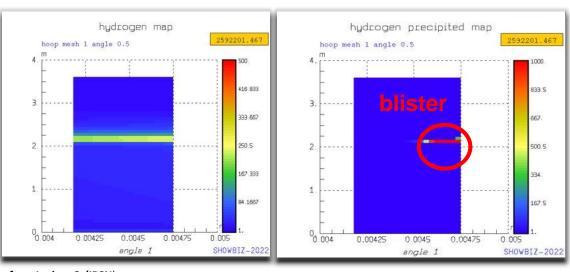


### Burst transient FP release

Xe<sup>133</sup> R/B ratio evolution during power transients (HATAC C2)



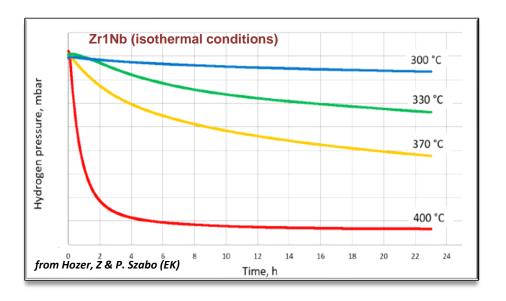
 Dev<sup>t</sup> of mechanistic modelling (coupling fuel performance/FP codes for transient spike releases (due to power decrease & stress variations) (presentation 2.3 & 3.7)




## Main Results: SGTR modelling

Evaluation of the risks of defective fuel rod failure

Existing studies for clad Ilary hydriding focussed on LOCA (i.e. @ higher T) overpredicts H<sub>upt</sub> @400°C


Clad Secondary Hydriding (in N.O.)



from Leclere C. (IRSN)

- Devpt of an integral model for clad II<sup>ary</sup> hydriding in defective rods from water ingress to blister formation
- Simple failure criterion proposed from blister depth
   & mechanical analyses of remaining clad
   thickness

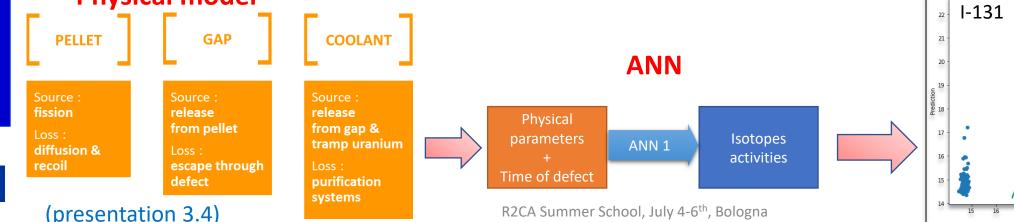
### H<sub>2</sub> uptake measurts @300-400°C



 Reffited solubility parameters in SIEVERT law (H<sub>sol.</sub>= f(pH<sub>2</sub> & O<sub>2</sub> content)






### **Main results: Accident Management & Prevention**

#### **AMBITION**

Analyse values of operating parameters plants to optimize their safety

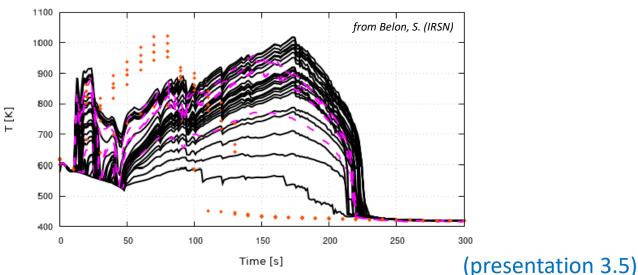
- Optimisation of Accident Management Procedures (presentation 3.3)
  - Use of Downhill-SIMPLEX Method to find a functional dependency between AM parameters and lodine activity threshold release to reduce iodine spike phenomenon impact
- Elaboration of an expert system for early diagnosis of defective fuel rods
  - Devept of a physical model for activity release from fuel rod to coolant
    - Isotope transmutation and transport equations considered
  - Generation of a sample dataset from the developed model (2000 samples generated)
    - Determination of the most influential parameters
  - Design of 2 artificial Neural Networks for 1) coolant activity 2) defect formation predictions
    - ANNs trained on generated data: 2000 samples split in training (80%) and testing (20%)

Results
Physical model

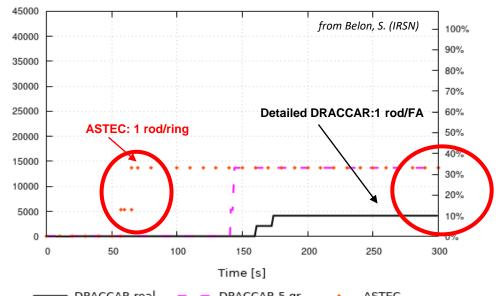







# Impact: Updated LOCA Reactor Calculations

- PWR LOCA DBA: DRACCAR/ASTEC calc. of IB (16,3" in CL) + LOOP + ½ DG
  - Improvements made:
    - New DRACCAR core modelling approach (1/8<sup>th</sup> of core ⇔ 26 FAs): average 2D model (at least 1 equivalent rod/FA, 2D(r,z) thermal meshing, 2.5 D (Θ,z) for clad contour/creep) with contact detection, 3D-2-phase model for core T/H (1 channel/FA+ 1 D T/H in RCS)
    - New burst criteria specific to burst risk assessment


ASTEC

Chaining of ASTEC FP modules with DRACCAR + Gap release of FP evaluated for each FA



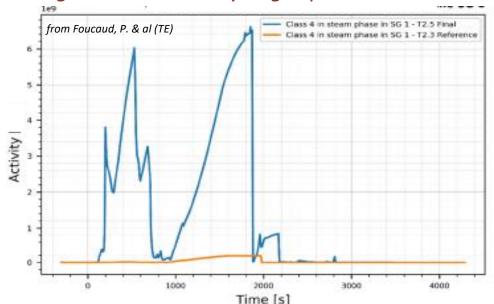


#### Lower failed rod number : 10 (16 FA) vs 33 %

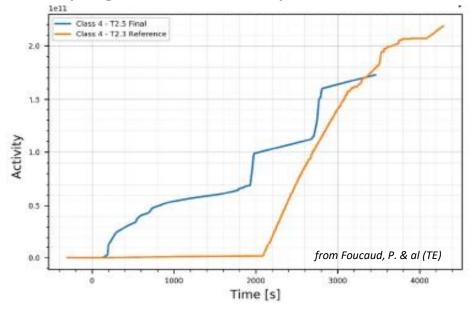




R2CA Summer School, July 4-6<sup>th</sup>, Bologna




## **Impact: Updated SGTR Reactor Calculations**


### PWR SGTR DEC-A: SGTR +SLBOUT

- Improvements made:
  - Optimization of EOPs: faster controlled RCS depressurization to reduce break mass flow rate and releases into environment + earlier HPSI pump trip
  - Refinement of iodine partitioning model in SG taking into account increase with T, and evaporating conditions





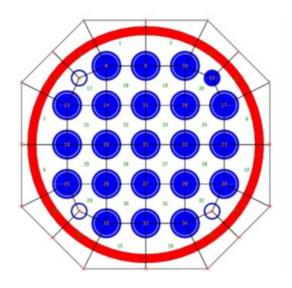
#### early higher iodine activity release in env<sup>t</sup>





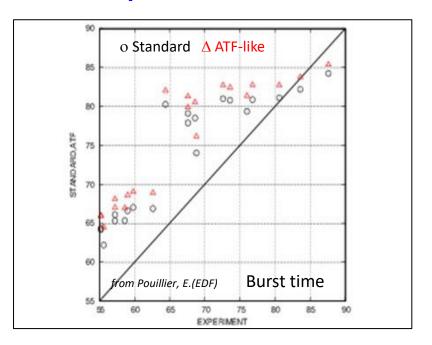
BUT finally lower activity released in env<sup>t</sup> and RC incl. for iodine (eq. thyroid doses)




### **Impact: ATF evaluation**

#### **AMBITION**

Evaluate advanced fuel-rod concepts that better withstand accidents


New evaluations of some ATF concepts using updated calc. chains, code extension capabilities with various ATF properties, uncertainty & sensitivity studies on relevant parameters

Cr-coated Zr evaluation in LOCA (QUENCH L1 test)



#### **DRACCAR** modelling

Total number of fluid/structure meshes: 1632/12720



- Detailed DRACCAR modelling of QUENCH L1 test with Cr-coated Zr-4 rod bundle and decreased creep rate indicating a delayed rod burst (consistent with burst occurrence @ higher P/T)
- ATF-like burst criterion & oxidation not considered (presentation 3.8)





# Summary

- Different kinds of improvements made for both LOCA & SGTR calculations
  - ✓ Updated approach of core modelling & nodalisation
  - ✓ Enhanced tool coupling, use of mechanistic models to improve low-informed tool prediction
  - ✓ Upgraded simulation tools/models at different levels of details for most impacting processes regarding environmental radioactive releases



new validated numerical tools in support to the integration of DBA/DEC-A accident risks (ST evaluation) in design phase of future NPP concepts

- Provided updated calculation chains lead to less conservative assessments of RC in LOCA/SGTR sequences within DBA/DEC-A conditions in different concepts of NPPs.
- Means/actions to reduce RC (i.e. timing, operator's actions, accident management procedures
  optimization & early defect detection tools (incl. use of Neural Network) were proposed
- Near-term ATFs were evaluated through updated methodologies & Sensitivity Analyses



# Thank you!

- Presentations in Conference (2021/22): NENE, SNE, TOPFUEL, NURETH19...
- Journal papers (Nucl. Eng and Tech.)
- 1 ANE special issue expected for the end of 2023
- All public deliverables will be archived in Zenodo (R2CA project community) & R2CA public website (<a href="https://r2ca-H2020.eu">https://r2ca-H2020.eu</a>)



