

REDUCTION OF RADIOLOGICAL ACCIDENT CONSEQUENCES

WP:	WP 6 – Knowledge dissemination
Task:	Clad behavior modelling advancements
Speaker:	Tatiana Taurines
Affiliation:	IRSN
Event:	Short Course DBA and DEC-A for Light Water Reactors
When:	July 5 th 2023
Where:	Bologna (Italy) + Teams

Why developing new cladding mechanical models in the frame of R2CA

Objective: Quantification of the radiological consequences during PWR LOCA

- · Cladding thermomechanical behavior prediction is needed to evaluate the number of failed rods
- Historical burst criteria were mostly dedicated to predict flow blockage due to ballooning and were usually fitted on cladding hoop strain prediction
- New cladding materials are currently used or under testing in reactors

Reduction in local flow area as a function of rupture temperature for internally heated Zircaloy clad bundles in aqueous atmospheres at heating rates less than one equal to $10^{6}C_{1}$.

able 4-1: Chemical composition, material condition and estimated corrosion and creep behaviour of alternate Zr alloys being applied for PWR application.

Alloy	Sn %	Nb %	Fe %	Cr %	Others	Cond.*	FF**	Creep (%)+	Used since
Best Zry-4	1.3		0.22	0.1	1200 ppm O	SR ¹⁰	~2.5	0.48	
Best Zry-4	1.3		0.22	0.1	1200 ppm O	RX ¹¹	~4	0.26	
E110		1	0.01		600 ppm O ₂ , F- impurity	RX	~0.8	0.31	
DX-ELS12-0.8b	0.8		0.3	0.2	1200 ppm O ₂	SR	~1.1	0.48	1991
ZIRLO	1	1	0.1		1200 ppm O ₂	SR	~2.5	0.37	1991
ZIRLO	1	1	0.1		1200 ppm O ₂	RX	?	0.20	1991
PCA-2b	1.3		0.3	02	1200 ppm O ₂	PR	1.8		1995
PCAm	1.3		0.3	02	1200 ppm O ₂	RX	2.3		
DX13_3b	0.8		0.5		1200 ppm O ₂	SR	~1		1993
DX-D4	0.5		0.5	0.2	1200 ppm O ₂	SR	~1	0.48	2000
HPA ¹⁴ -4	0.5		0.5		0.3% V, 1200 ppm O ₂	RX	~1.3	0.50	1999?
M5		1	0.04		1200 ppm O, 20 ppm S	RX	~0.8	0.34	1998
E635∞	1.3	1	0.4		900 ppm O ₂	RX		0.18	1997
MDA	0.8	0.5	0.2	0.1	1200 ppm O ₂	SR	~2.4	0.45	2004
NDA	1	0.1	0.3	0.2	1200 ppm O ₂	SR	~2.4	0.71	2004
Optim. ZIRLO	0.67	1	0.1		1200 ppm O ₂	PR		0.37	2008
E110-Sponge		1	0.04		800 ppm O ₂ ,	RX	~0.8	0.28	2009
*ER cladding/structural nast SR - stress relieved PR - nastially respectablished RY - fully respectablished									

*FR cladding/structural part. SR = stress relieved, PR = partially recrystallised, RX = fully recrystallised.
*Estimated corrosion rate relative to out-of-pile Zry-4 corrosion rate by the author based on published oxide data and [Seibold & Garzarolli, 2002].

Corrosion Rate increases in-PWR at >50 MWd/kgl

Only used for structural component

Estimated for a fluence of 3E21 n/cm² (>1MeV) and a stress of 70 MPa acc. [Adamson et al, 2009a]

ANT International, 201

New thermomechanical models and new burst criteria are needed to better predict the number of failed rods during LOCAs

Cladding modelling in R2CA

Cladding behavior during LOCA transients

- -General overview of key phenomena during LOCA
- -Phase transition modelling improvements in R2CA
- -Creep modelling improvements in R2CA
- -Cladding burst improvements in R2CA

The cladding material undergoes several changes during the LOCA transient

4

Cladding alloy metalurgical changes

Fig. 10. α - and β -phase boundaries of the pseudobinary zircaloy-4/oxygen phase diagram determined by metallographic analyses of equilibrated and quenched specimens.

Source: H.M. Chung, Journal of Nuclear Materials 84 (1979) 327-339

During the heat-up phase the cladding undergoes metallurgical changes around 700-800°C that significantly impact thermomechanical behavior

Phase transition modelling

Cladding alloy metalurgical changes

Equilibrium volume fraction of β phase as a function of temperature calculated (lines) versus measured data (markers)11 for Zircaloy-4 and Zr-1NbO alloy.

Source: A.R. Massih, L.-O. Jernkvist, "Solid state phase transformation kinetics in Zr base alloys", Scientific Reports, Nature, 2021

Volume fraction of β phase as a function of temperature calculated for Zry-4

Source: T. Jailin, PhD Thesis, Étude expérimentale et modélisation du comportement d'un tube de gainage lors d'un accident de réactivité en phase post-crise ébullition

Volume fraction of β phase as a function of temperature calculated (lines) using model B versus measured data (markers)11 for Zr1NbO at heating rates q = dT/dt = 10 and 100 K/s and at thermal equilibrium.

Source: A.R. Massih, L.-O. Jernkvist, "Solid state phase transformation kinetics in Zr base alloys", Scientific Reports, Nature, 2021

Phase transition modelling

Cladding alloy metalurgical changes

Figure 2. Phase boundary temperatures versus hydrogen concentration for Zircaloy-4L measured upon heating $(\triangle \triangleright)$ and cooling $(\nabla \triangleleft)$ at ≈ 0.17 K/s. The lines (between heating and cooling) are assumed to represent the equilibrium temperatures; after Brachet et al.²⁰.

Equilibrium volume fraction of β phase as a function of temperature calculated for Zircaloy-4 with several concentrations of hydrogen. Solid lines are calculated whereas the dashed lines are based on analysis of experimental data.

Source: A.R. Massih, L.-O. Jernkvist, "Solid state phase transformation kinetics in Zr base allovs", Scientific Reports, Nature, 2021

Phase transition modelling improvements in R2CA

- Identification of state-of-the-art models
 - →A.R. Massih, L.-O. Jernkvist, "Solid state phase transformation kinetics in Zr base alloys", Scientific Reports, Nature, 2021
 - Zry-4: heating rate and hydrogen impacts
 - Zr1%Nb alloy: heating rate impact
- Implementation of models in TRANSURANUS (ENEA-JRC)
- Implementation in VTT-FRAPTRAN version (VTT)

Cladding ballooning and burst

Burst morphologies

Contact development

ORNL-MRBT - sections from highly deformed regions of B5

During the heat-up phase the cladding may balloon till burst → ballooning and burst predictions are needed to evaluate the fission gas release to the primary circuit

REDUCTION OF RADIOLOGICAL CONSEQUENCES OF DESIGN BASIS & DESIGN EXTENSION ACCIDENTS

Cladding creep/ballooning

Stress sensitivity of the strain rate: present experimental results on Zr 1%Nb-2%O alloys (black symbols) and on Zr-1%Nb-3.2%O alloys (grey symbols), predictions at 1000°C for zirconium alloys which are non-enriched (color lines) [13] or enriched with oxygen (dashed and dotted grey lines) [11]. Source: R. Chosson PhD manuscript

During the heat-up phase, cladding creep occurs due to temperature increase and pressure difference increase.

Cladding creep/ballooning

Various creep models available in literature

Depending on diffusion regimes

- Diffusion at low stresses
- Dislocation at high stresses or high temperature

Example: Norton law

$$\dot{\varepsilon} = \frac{A}{T} \sigma^n \exp\left(-\frac{Q}{RT}\right) \quad \dot{\varepsilon} \text{ strain rate (-)}$$
 A, n, Q model coefficients

 σ true stress (Pa)

Deformation-mechanism maps for (a) Zy-4. Lines of constant true axial strain rate are plotted using the model presented in this paper Source D. Kaddour et al., Scripta Materialia, vol. 51, 2004, 515.:

Creep rate depends on the metallurgical phase, temperature, stress, oxygen and hydrogen content

Creep modelling improvements in R2CA

- Analysis of various creep models for Zirconium alloys
- Implementation and validation in fuel performance codes
 - Implementation of two new models in VTT-FRAPTRAN version (VTT)
 - Rosinger¹ for Zircaloy-4 and is suitable for generic zircalloy claddings type
 - Kaddour² Norton creep law both for Zy-4 and Zr1%NbO (M5) types
 - Fit of existing creep model parameters in FRAPTRAN on E110 cladding after burst models identification (EK)
 - Implementation of Kadour¹ and Massih³ models in TRANSURANUS (ENEA-JRC)

References:

¹H. E. Rosinger, "A Model to predict the failure of Zircaloy-4 fuel sheating during postulated LOCA conditions," Journal of Nuclear Materials, vol. 120, p. 41, 1984, doi: 10.1016/0022-3115(84)90169-7

²D. Kaddour, S. Frechinet, A. F. Gourgues, J. C. Brachet, L. Portier, and A. Pineau, "Experimental determination of creep properties of zirconium alloys together with phase transformation," Scr Mater, vol. 51, no. 6, pp. 515–519, 2004, doi: 10.1016/j.scriptamat.2004.05.046.

³A.R. Massih, "High-temperature creep and superplasticity in zirconium alloys", Journal of Nuclear Science and Technology, 50, 2013, pp. 21-34.

Figure 4: Creep rate of M5[™] as a function of temperature and heat rate: +10 K/s

Source: R. Calabrese, NENE2022

Burst in LOCA conditions

OCA transient Inititial After creep and burst state

Engineering burst strain

$$\varepsilon_e = \frac{C_e - C_e^0}{C_e^0}$$

Engineering burst stress

$$\sigma_e = \frac{P_i(r_e - t_0) - P_e r_e}{t_0}$$

True burst stress

$$\sigma_T = \sigma_e \cdot (1 + \varepsilon_e)^2$$

 P_i internal pressure at burst time P_e external pressure at burst time r_e cladding external radius at initial state t_0 cladding thickness at initial state

R2CA Summer school

Burst in LOCA conditions

Strong scattering in experimental data points!

Source: T. Taurines, D3.4 T3.2 Final report – R2CA H2020 EC project

14

Burst in LOCA conditions

More than 1400 tests in LOCA conditions

Alloy Test type	Ζγ-4	M5/E110/Zr-1%Nb	Zirlo/Opt Zirlo	Ζγ-2
Creep	78	12	0	0
T ramp	1093	55	79	12
P ramp	31	49	0	0
Total	1202	116	79	12

Table 5: General overview (cladding alloy, test type and number of tests) of complete collected burst tests.

Percentile Parameter	0 (min)	0.1	0.25	0.5 (median)	0.75	0.9	1 (max)
Burst temperature (°C)	525	710	757	813	889	993	1330
Engineering Circumferential Burst Strain (%)	4	16	28	43	66	89	155

Source: T. Taurines, D3.4 T3.2 Final report – R2CA H2020 EC project

Most tests were temperature ramp tests on Zry-4, very few data on irradiated fuel rods

15

Implementation in the DRACCAR code (Fuel+ IRSN Platform)

Figure 14: True burst stress versus experimental burst temperature, best estimate fit and exponential envelopes

Source: T. Taurines, D3.4 T3.2 Final report – R2CA H2020 EC project

Envelopes on true burst stress were fitted to allow sensitivity studies for number of failed rods estimation

$$T_{burst}(^{\circ}C) = A - \frac{B \sigma_{e,\theta}}{1 + \frac{\min\left(\frac{dT}{dt}, 38\right)}{C} + D \sigma_{e,\theta}}$$

- T_{burst} is the burst temperature (°C)
- $\sigma_{e\theta}$ the engineering hoop stress (kpsi)
- $\frac{dT}{dt}$ the heating rate (°C/s)
- New burst temperature criterion fitted considering only internally heated as-received claddings
- Comparison to other criteria shows a different trend for low burst temperatures and a similar trend at high burst temperatures
- Implementation in the DRACCAR code (Fuel+ IRSN Platform)

Figure 11: Impact of cladding hydrogen content on burst temperature from literature and fitted during this work

Source: T. Taurines, D3.4 T3.2 Final report – R2CA H2020 EC project

Hydrogen content leads to lower burst temperatures, a correlation has been proposed.

More data on irradiated rods are needed to improve the correlation

REDUCTION OF RADIOLOGICAL CONSEQUENCES DESIGN BASIS & DESIGN EXTENSION ACCIDENT

- 3D scanning measurements of previous burst tests on E110
- Analysis of strain at various elevations/ burst elevation
- Proposal of a conservative burst criterion for radiological consequences analysis
 - A strain limit of 21% was used

Conclusions and prospects

Conclusions

- State of the art models for phase transition and new creep laws have been implemented in the TRANSURANUS and FRAPTRAN-VTT codes
- Very large burst database in LOCA conditions was built (more than 1400 burst tests)
- Burst criteria
 - New engineering burst stress criteria fitted on internally heated as-received cladding rods implemented in the DRACCAR code
 - Hydrogen impact on burst temperature correlation
 - Low strain envelope for E110

Open questions and data gaps

- Burst data for irradiated fuel rods with impaired axial gas communication
- Burst tests with more complex transients similar to LOCA Intermediate and small breaks transients ("Low Peak cladding temperatures" ~700-900°C)

R2CA Summer school

BACK – UP for questions

Fig. 10. α - and β -phase boundaries of the pseudobinary zircaloy-4/oxygen phase diagram determined by metallographic analyses of equilibrated and quenched specimens.

Source: H.M. Chung, Journal of Nuclear Materials 84 (1979) 327-339

Fig. 5. Pseudobinary Zr1Nb–O phase diagram for temperatures 600– $1400\,^{\circ}$ C and oxygen concentrations 0–5 wt.%. The dashed lines indicate calculated phase intefaces $\alpha/\alpha + \beta$ and $\alpha + \beta/\beta$.

Source: M. Négyesi, Journal of Nuclear Materials 420 (2012) 314-319

Impact of cladding material and hydrogen content on phase transition