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A Accuracy — Sensitivity - Uncertainty

DESIGN BASIS & DESIGN EXTENSION ACCIDENTS
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UA:

It can be defined as “the known bias between a code prediction and the
actual transient performance of a real facility’.

The evaluation of accuracy implies the availability of a calculation result and of a
measured value. The experimental error is not part of the definition

“‘what-if” analysis. “The study of how the variation in the output of a model
(numerical or otherwise) can be apportioned, qualitatively or quantitatively, to
different sources of variation, and of how the given model depends upon the
information fed into it”.

Performed for verification purposes, for finding a) singular points, b) the factors that
mostly contribute to the selected response or ¢) the correlation among input variables

“An analysis to estimate the uncertainties and error bounds of the quantities
involved in, and the results from, the solution of a problem”. Estimation of
individual modeling or overall code uncertainties, representation uncertainties,
numerical inadequacies, user effects, computer compiler effects and plant data
uncertainties for the analysis of an individual event.

Nuclear safety principles and concepts like defense-in-depth require to perform UA: it
must be ensured that the nominal result of a code prediction, ‘best-estimate’ in the
present case, is supplemented by the uncertainty statement in such a way that
connected safety margins are properly estimated.



A Why Uncertainty Evaluation?
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gf/\ Propagation of input uncertainty

DESIGN BASIS & DESIGN EXTENSION ACCIDENTS
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A UMAE & CIAU: Propagation of output uncertainty
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UMAE & CIAU: Propagation of output uncertainty

THE CIAU METHOD
CIAU = Code with the capability of Internal Assessment of Uncertainty

* RELAPS IS THE CODE
« UMAE IS THE COUPLED UNCERTAINTY METHODOLOGY

Any Qualified Thermal-Hydraulic System Code and Any Qualified Uncertainty Methodology can
be coupled to constitute the CIAU

THE WORDS ‘INTERNAL ASSESSMENT OF UNCERTAINTY’ CAME OUT AS A NEED FOR THE SCIENTIFIC
COMMUNITY DURING THE OECD/CSNI "ANNAPOLIS MEETING” ORGANISED BY US NRC AND HELD IN
ANNAPOLIS (MD) IN NOVEMBER 1996
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gf/\ CIAU Parameters

* Problem CIAU “stores” the uncertainty of three main parameters
 Primary system pressure
 Hot rod temperature
* Primary system mass inventory

* Aim for R2CA — evaluate the uncertainty of iodine release to the
environment during a DEC-A steam generator tube rupture event

* Approach — “uncertainty propagation” analogous to “error
propagation”
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DESIGN BASIS & DESIGN EXTENSION ACCIDENTS




gf/\ Considered Event

At VVER-1000 320 pressurized water reactor consider “hot header
break”

* Leak equivalent to 100mm Diameter from primary system to
secondary system (beyond “usual” size of Steam Generator Tube
Rupture, but considered at VVER as bounding case)

* Further assumption — BRU-A valve of affected loop stuck open
after first opening

DESIGN BASIS & DESIGN EXTENSION ACCIDENTS
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* |lodine transported with Relap5-3D radionuclide transport model




gf/\ Uncertainty propagation assumptions @KU

» Target — uncertainty of iodine release because of TH-SYS code
uncertainty

* |odine transi)orted with fluid — break flow will govern the release to the
environmen

* Over the time simulated “choked flow” phaenomena present and
Relap5-3D choked flow model applied

» Choked flow governed by sound speed, which in term is governed by
void fraction and upstream pressure

* Upstream (SS) pressure uncertainty governed by primary pressure
uncertainty, since systems are connected in the present case

» Used Gauss error propagation law to propagate PS-Pressure
Uncertainty to lodine release uncertainty

* Uncertainty of void fraction at the valve from literatur
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A Results CIAU and propagated uncertainty

Mass Inventory in PS

DESIGN BASIS & DESIGN EXTENSION ACCIDENTS
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g/ Conclusion @KU

* One contributor of uncertainty was propagated
* Other contributors might have even larger influence

* Approach of propagation not general applicable — tight to transient
and domain of parameters

 However, indication of uncertainty related to the use of TH-System
code could be derived!
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Thank you!

Contact: nikolaus.muelliner@boku.ac.at




