

REDUCTION OF RADIOLOGICAL ACCIDENT CONSEQUENCES

Title	Safety systems & accident mitigations			
Speaker:	Nikolaus Müllner			
Affiliation:	BOKU University Vienna			
Event:	R2CA Summer School			
When:	4-6 July 2023			
Where:	ENEA Bologna			

Table of Contents

 Preventing and mitigating accidents on different levels – defence in depths concept

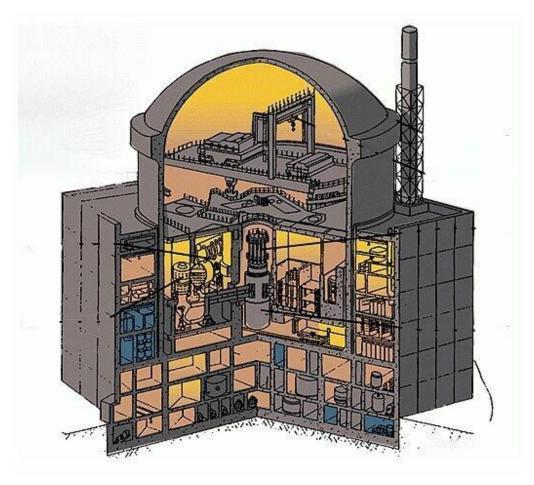
- Safety Systems explained by example the VVER 1000/320 pressurized water reactor
 - Reactor protection system
 - > Emergency core cooling system
 - Other safety systems
- Summary

Defence in Depth (DiD) concept

- Good first summary in INSAG-10 "Defence in Depth in Nuclear Safety 1996
- However, concept is older and was developed over time
- Recent update to incorporate lessons learned from Fukushima in IAEA TECDOC-1791 "Considerations on the Application of the IAEA Safety Requirements for the Design of Nuclear Power Plants" which became the Safety Guide "Assessment of the Safety Approach for Design Extension Conditions and Application of the Concept of Practical Elimination in the Design of Nuclear Power Plants" (DS 508, to be published this year)

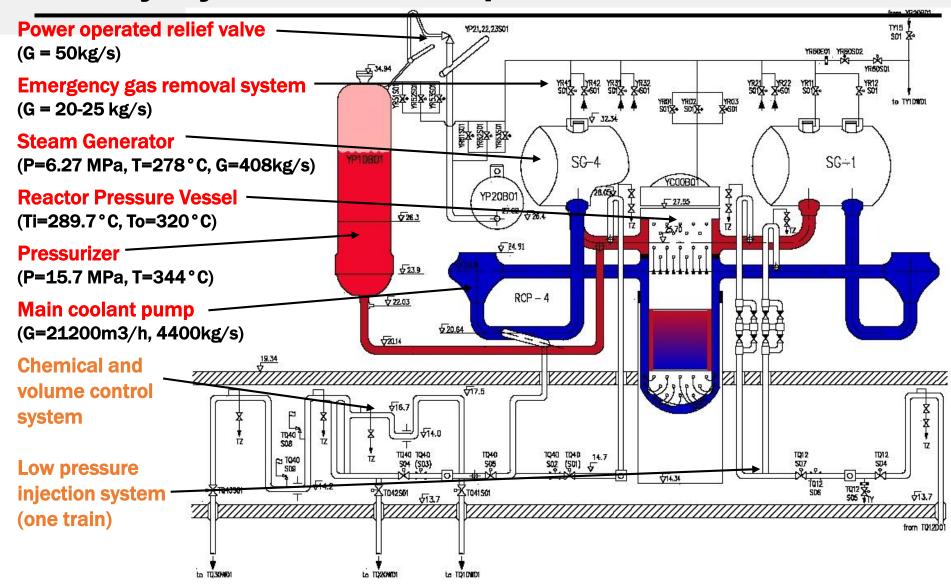
Defence in Depth (DiD) concept

Level of de	efence				Level of defence
		Objective	Essential design means	Essential operational means	
Approa	ch 1				Approach 2
Level 1		Prevention of abnormal operation and failures	Robust design and high quality in construction of normal operation systems, including monitoring and control systems	Operational limits and conditions and normal operating procedures	Level 1
Level 2		Control of abnormal operation and detection of failures	Limitation and protection systems and other surveillance features	Abnormal operating procedures and/or emergency operating procedures	Level 2
Level 3	3a	Control of design basis accidents	Safety systems	Emergency operating procedures	Level 3
	3b	Control of design extension conditions to prevent core melting	Safety features for design extension conditions without significant fuel degradation	Emergency operating procedures	4a
Level 4		Control of design extension conditions to mitigate the consequences of severe accidents	Safety features for design extension conditions with core melting ^[2] Technical support centre	Severe accident management guidelines	Level 4 4b
Level 5		Mitigation of radiological consequences of significant releases of radioactive substance	On-site and off-site emergency response facilities	On-site and off-site emergency plans and procedures	Level 5


Safety Systems – Example VVER 1000

Водо-водяной энергетический реактор

- Water cooled
- Water moderated
- Electrical power 1000MW
- Thermal power 3000MW



Safety Systems – Example VVER 1000

Safety Systems – Reactor Protection System

- Power > 107%
- Low level in any of the steam generators
- Pressure above the core > 17.65
- Pressurizer level < 4.6 m
- Pressure in any of the steam lines > 7.848 MPa
- Temperature in any of hot legs 10 degree from saturation margin
- Temperature in any of the hot legs higher than 324 deg C
- Pressure above the core lower than 13.73 MPa and temp
- In any of the HLs > 260 deg C
- Pressure above the core lower than 14.51 MPa and Power above than 75% of nominal power
- Two out of four pumps tripped, power above than 75% with a delay of 6s
- All four pumps tripped, without delay

Safety Systems – Emergency core cooling system

- High pressure boron injection system HHPIS (TQ4)
 - Three independent trains 3x100%, each consisting of
 - Tank (15m³ 40g/kg of boric acid in water)
 - Pump (injection up to 20MPa, flow rate at nominal pressure 6.3 m³/h, 2 kg/s)
 - Pipes and valves injection into loop 1,3 and 4 after MCP
- High pressure injection system HPIS (TQ3)
 - Three independent trains 3x100%, consisting of
 - Tank (15m³ 40g/kg of boric acid in water)
 - Pump (injection up to 10.9 MPa, flow rate at 8.8 MPa 130 m³/h, 36 kg/s)
 - Pipes and valves
 - Once tanks are empty, pumps can take suction from the containment sump (500 m³ water boric acid
 - Common injection lines with TQ4

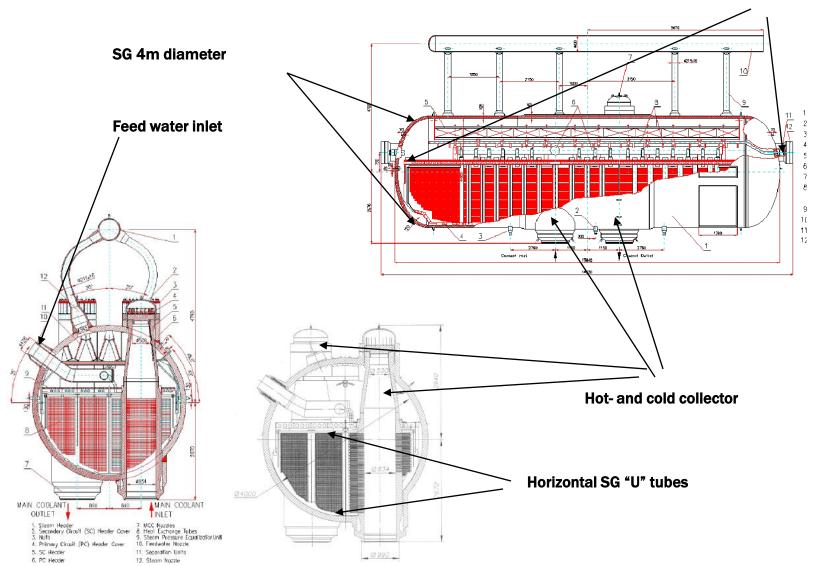
Safety Systems – Emergency core cooling system

Hydro accumulators (YT)

- Four hydro accumulators (4x33%)
- Boric acid concentration 16g/kg water
- Activation pressure 5.9 MPa +/- 0.3 MPa
- Pipes and Valves (four independent lines)
- Injection point into upper plenum (2) and downcomer (2)
- Water volume 50 m³, Nitrogen volume 10 m³

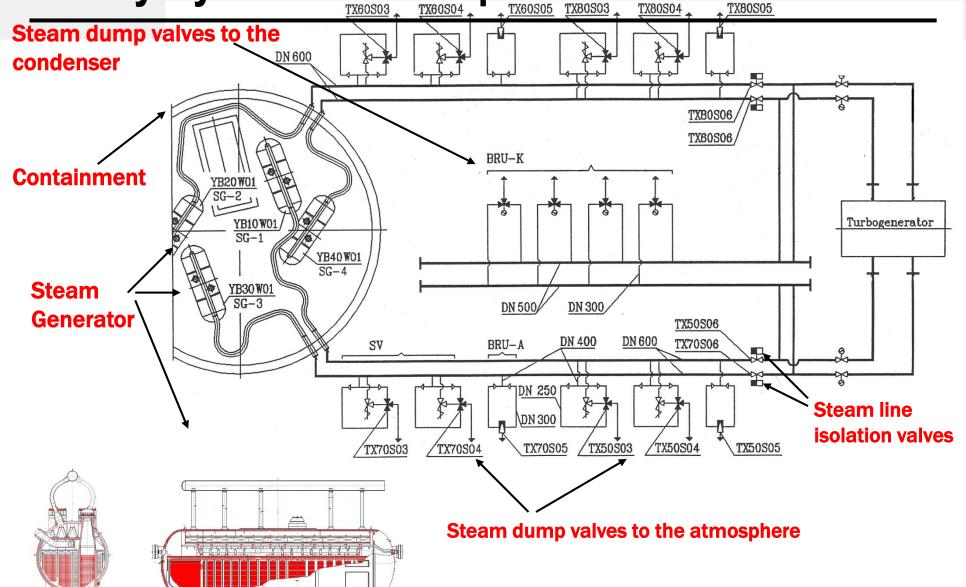
Low pressure injection system LPIS (TQ2)

- Three independent trains 3x100%, consistent of
- Pump (injection up to 2.6 MPa, flow rate at 1 MPa 750 m³/s, 210 kg/s)
- Emergency cool-down heat exchanger
- Pipes and valves
- Suction from containment sump (500 m³, 16g/kg of boric acid)
- Two trains injection into UP and DC respectively, one into HL/CL of loop No 1



Safety Systems – Example VVER 1000

12m length



Safety Systems – Example VVER 1000

TX60S03 • TX60S04 • TX80S04 •

Safety Systems – Emergency Feed Water System

Feed water system (from deaerator to SG)

- Two feed water (deaerator) tanks (5.8 bar, saturated steam/water, roughly 160 °C, Volume 185 m³ each)
- Two booster pumps and main feed water pumps, capacity 950 kg/s (3750 m³ /h) each
- Two auxiliary feed water pumps (for startup- and shutdown), capacity 40 kg/s (150 m³ /h) each
- Pipes, heat exchanger and valves (volume of pipes roughly 170 m³)

Emergency feed water system

- Three independent trains (3x100%) consisting of:
- Feed water tank (atmospheric pressure, temperature 50°C)
- Pump capacity 40 kg/s (150 m³ /h)
- Pipes and valves
- Supply from diesel generator in case of loss of offsite power

Safety Systems – Summary

- Safety Systems: automated response of the plant in case of
 - Anticipated operational occurrences (AOO)
 - Design basis accidents (DBA)
- Main elements of Safety Systems:
 - Reactor Protection System (Instrumentation and Control)
 - Emergency core cooling system
 - Other emergency systems Emergency Feedwater System, Primary System Safety Valves, Secondary System Safety Valves, Containment Spray System, ...

Thank you!

Contact: nikolaus.muellner@boku.ac.at

