

REDUCTION OF

RADIOLOGICAL

CONSEQUENCES

ACCIDENT

Title	Fuel behaviour tools
Speaker:	Paul VAN UFFELEN
Affiliation:	European Commission, DG Joint Research Centre, Karlsruhe
Event:	R2CA Summer School
When:	4-6 July 2023
Where:	ENEA Bologna

Importance

- Ensure safe and economic operation of fuel rods
 - → predict their behaviour and life-time
- Description of fuel rod's behaviour involves various disciplines
 - Chemistry
 - Nuclear and solid state physics
 - Metallurgy and ceramics
 - Applied mechanics

Strongly interrelated

→ Development of fuel performance codes

General outline

- Basic equations and limitations
 - Heat transfer
 - Mechanical analysis
 - Fission gas behaviour
- Coupling of modelling / experimental data

General assumptions

- Fuel element with cylindrical geometry
- Axisymmetric revolution of the rod
- Radial T-gradient >> axial T-gradient

 \rightarrow "1.5 D"

Heat transfer

1. In the coolant

- 2. Through the cladding
- 3. In the fuel-to-clad gap
- 4. In the pellets
- 5. The structure of the thermal analysis

Heat flow in fuel-cladding gap Three parallel conduction routes

$$\Delta T_{gap} = \frac{q''}{h_{gap}}$$

$$h_{gap} = h_{rad} + h_{con} + h_{gas}$$

$$h_{gas} = \frac{\lambda_{gas}}{\delta + s + g_f + g_{cl}}$$
uncertainty

Schematic T profile through the gap

RADIOLOGICAL CONSEQUENCES

OF.

REDUCTION

Heat flow in the fuel pellets

The source term

Fuel thermal conductivity Effect of various parameters

• De

Density (pore size, shape, orientation)

• Loeb (modified)
$$\lambda = \lambda_{100\%} \left(1 - \alpha P \right)$$

$$\lambda = \lambda_{100\%} \frac{1 - P}{1 + \alpha P}$$

Composition

Irradiation

$$A = A$$
(composition, bu)

Effect of porosity on thermal conductivity of UO₂

General outline

- Basic equations and limitations
 - Heat transfer
 - Mechanical analysis
 - Fission gas behaviour
- Coupling of modelling / experimental data

Mechanical analysis

Main assumptions

1. System is axysimmetric: no tangential variation

- Plane strain:
 - → Rod remains cylindrical
 - \rightarrow 1D problem

General aspects and basic relations

Constitutive relations

In general fuel and cladding are not only subject to elastic strains

Thermal expansion

& DESIGN EXTENSION ACCIDENTS RADIOLOGICAL CONSEQUENCES REDUCTION OF OF DESIGN BASIS

**** European Commission

Swelling

- We assume that swelling is isotropic
- Four contributions in fuel

$$\varepsilon_{fuel}^{s} = \frac{1}{3} \left[\left(\frac{\Delta V}{V} \right)_{solid FP} + \left(\frac{\Delta V}{V} \right)_{gaseous FP} - \left(\frac{\Delta V}{V} \right)_{densification} - \left(\frac{\Delta V}{V} \right)_{hot pres \sin g} \right]$$

- 1. Inexorable swelling due to solid FP
- 2. Gaseous FP swelling
- 3. Reduction in volume by densification / sintering

4. Reduction in volume by hot pressing

Hot standby stack length changes densification +solid FP swelling

Modelling densification + swelling

Modelling UO₂ swelling

Simple linear swelling due to FP accumulation

$$\Delta \left(\frac{\Delta V}{V}\right) = S \Delta B u$$

Mechanistic gaseous swelling calculation (SCIANTIX of MFPR-F)

$$\left(\frac{\Delta V}{V}\right) = \left(\frac{\Delta V}{V}\right)_{FP} + \left(\frac{\Delta V}{V}\right)_{GB}$$

Visco-plastic strain: generalities

- Permanent deformation at constant volume
 - → incompressibility condition:

$$\varepsilon_r^c + \varepsilon_t^c + \varepsilon_a^c = 0$$

Two components

$$\varepsilon_i^c = \varepsilon_i^{plastic} + \varepsilon_i^{creep}$$

- Plastic deformation: instantaneous (often only in clad)
- Creep deformation: dependent on time

Plastic strain

- → Yield function: Relies on invariant of deviatoric stress tensor
 - Von Mises criterion in 1D for isotropic materials

$$\sigma_{\it eff} > \sigma_{\it Yield}$$

depends on three principle deviatoric (shear) stresses

$$\sigma_{eff} = \frac{1}{\sqrt{2}} \left[\left(\sigma_r - \sigma_t \right)^2 + \left(\sigma_r - \sigma_a \right)^2 + \left(\sigma_t - \sigma_a \right)^2 \right]^{\frac{1}{2}}$$

- Improvements:
 - Anisotropy coefficients (Hill's methodology)
 - Multi-dimensional yield surface

Plastic strain

Determine the onset

Calculation of creep strains

Components:

- Thermal creep
- Irradiation induced creep

Creep rate:

$$\dot{arepsilon}_{ ext{ iny eff}} = f\left(T, \sigma_{ ext{ iny eff}}, \Phi
ight)$$

*** *** European Commission

Fuel cracking: description

Occurs at startup due to differential thermal expansion:
 pellet centre expands more than pellet periphery

Thermal stress in perfect cylinder (parabolic T):

$$\sigma_{t,\text{max}} = \sigma_{a.\text{max}} = -\frac{\alpha E \left(T_{f,c} - T_{f,s}\right)}{2(1-\upsilon)} - \frac{\alpha E q'}{8\pi (1-\upsilon)\bar{\lambda}}$$

E = 200 GPa,
$$v = 0.31$$
, $\overline{\lambda} = 3$ W/mK, $\sigma_{max} = 130$ MPa \rightarrow $T_{f,c}$ - $T_{f,s}$ = 100°C or $q' = 5$ kW/m

Cracking of fuel - Consequences

Thermal analysis

Reduce fuel-cladding gap: relocation

Mechanical analysis

• Stress reduction, e.g. at interfaces: σ = - P_{gas}

Cracking of fuel - Consequences

Cracking of fuel

European Commission

Consequences of relocation on T

IFA-504; Linear Rating q' = 20 kW/m

Calculation of strains Cracking of fuel - Problems

Large uncertainty on rupture stress

- Only obtained from uni-axial tensile tests
- Effects of porosity, grain size and temperature

- Change of pellet geometry → loss of symmetry
 - Assumption invalid
 - Compression → tension in center

Calculation of strains Cracking of fuel - Solutions

T-distribution

- cracks do not modify flow direction → reduce gap
- Stress distribution
 - Exact solutions: NO, to do so requires
 - Know location and size of every crack ...
 - Solution of 3D stress-strain problem in each block
 - Approximate solutions
 - Modify material constants
 - Supplementary strain

Effect of cracking:

modified elastic constants (LIFE)

Pellet cracking: models for Nr of cracks

Oguma, NED, 1983

T. Barani, E. Bruschi, POLIMI, Italy, 2015

General outline

- Basic equations and limitations
 - Heat transfer
 - Mechanical analysis
 - Fission gas behaviour
- Coupling of modelling / experimental data

Bubble interconnection leads to incubation

Modelling of the FG behaviour

A two-step process

1. Intragranular behaviour: in the grains

2. Intergranular behaviour: along grain boundaries

Intragranular FGR module

Booth model

polycrystalline sinter = collection of uniform spheres (Booth sphere)

$$R_B = 3\left(\frac{V}{S}\right)_t$$

$$3\left(\frac{V}{S}\right)_{geom} \ge R_B \ge R_{grain}$$
 100% open porosity

- atomic diffusion in hypothetical sphere
- grain boundary = perfect sink (gas immediately released)

Intragranular FG behaviour Limitations of the Booth model

JF DESIGN BASIS & DESIGN EXTENSION ACCIDENTS

- constant T and fission rate density
- 2. disregard resolution/trapping at intragr. bubbles

disregard grain boundary sweeping 3.

- cannot reproduce incubation (Vitanza curve)
- 5. disregard resolution at gb bubbles

Alleviate limitation 2 of Booth model

Effective diffusion coefficient (Speight)

- Bubbles stabilize rapidly in size and number density
- Proposed model

$$\frac{\partial C_m}{\partial t} = D\Delta C_m + S - gC_m + bC_b$$

$$\frac{\partial C_b}{\partial t} = gC_m - bC_b$$

$$\frac{\partial (C_m + C_b)}{\partial t} = D\Delta C_m + S = \frac{b}{b+g} D\Delta (C_m + C_b) + S$$
$$= D_{eff} \Delta (C_m + C_b) + S$$

Alleviate limitation 2 of Booth model

NEW Effective diffusion coefficient

Consider bubble diffusion

$$\frac{\partial C_m}{\partial t} = D_m \Delta C_m + S - gC_m + bC_b$$

$$\partial C$$

$$\frac{\partial C_b}{\partial t} = gC_m - bC_b + D_b \Delta C_b$$

$$\frac{\partial \left(C_{m} + C_{b}\right)}{\partial t} = \left[\frac{b}{b+g}D_{m} + \frac{g}{b+g}D_{b}\right]\Delta\left(C_{m} + C_{b}\right) + S$$

$$= D_{eff}\Delta\left(C_{m} + C_{b}\right) + S$$

Gas atom diffusion coefficient

Three temperature regimes

$$D_1 = 7.6 \cdot 10^{-6} \exp\left(-\frac{35000}{T}\right)$$

$$D_2 = 5.6 \cdot 10^{-25} \cdot \sqrt{\dot{F}} \exp\left(-\frac{13800}{T}\right)$$

$$D_3 = 8 \cdot 10^{-40} \cdot \dot{F}$$

Large uncertainty: factor 5↑or↓

Grain growth in MOX and UO₂

Before annealing

After annealing

Modelling the FG behaviour

A two-step process

1. Intragranular behaviour: in the grains

- 2. Intergranular behaviour: along grain boundaries
 - → alleviate limitations 4 and 5 of Booth model

Coupling with intragranular module Boundary condition in intragranular module

JF DESIGN BASIS & DESIGN EXTENSION ACCIDENTS

Zero BC

segregation factor is ∞, or the gb is a thermodynamic perfect sink (simplest)

Majority of models

Non-zero BC

segregation factor reflects the interaction energy of solute atoms with the gb

Turnbull et al, Olander et al, Forsberg and Massih, Van Uffelen

Fission gas behaviour Swelling

Mostly empirical model

$$\left(\frac{\Delta V}{V}\right)_{gaseousFP} = A\left(1 - \alpha_{FG}FGR - \alpha_{Cs}CSR\right)bu$$

 However, swelling should be linked to FGR via gas balance as typically done in mechanistic models (e.g. SCIANTIX, MFPR-F)

Fission gas behaviour

New swelling and release model (1)

Basic assumptions for grain boundary model

- All gas retained inter-granular <u>bubbles</u>.
- bubbles have <u>uniform</u> size and lenticular shape

hydrostatic pressure

Fission gas behaviour

New swelling and release model (2)

Bubble growth/shrink by absorption/emission of vacancies

$$\frac{dn_{vac}}{dt} = \frac{2\pi D_g \, \delta_g}{kTS} \left(p - \frac{2\gamma}{R_{bubble}} - \sigma_h \right)$$

- Gas obeys <u>Van der Waals</u> equation of state
- Bubble <u>coalescence</u>
 determined by geometry

$$\frac{dN_{\text{bubble}}}{dA_{\text{bubble}}} = -2N_{\text{bubble}}^2$$

G. Pastore, PhD, POLIMI R. White, IFPE database

Fission gas behaviour

New swelling and release model (3)

• gas release at saturation of grain boundary coverage

G. Pastore

Thank you!

Paul.Van-Uffelen@ec.Europa.eu

